ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines.
نویسندگان
چکیده
Therapies that target the EGF receptor (EGFR), such as gefitinib (IRESSA), are effective in a subset of patients with advanced non-small cell lung cancer (NSCLC). The differences in intracellular signaling networks between gefitinib-sensitive and -resistant NSCLCs remain poorly understood. In this study, we observe that gefitinib reduces phospho-Akt levels only in NSCLC cell lines in which it inhibits growth. To elucidate the mechanism underlying this observation, we compared immunoprecipitates of phosphoinositide 3-kinase (PI3K) between gefitinib-sensitive and -resistant NSCLC cell lines. We observe that PI3K associates with ErbB-3 exclusively in gefitinib-sensitive NSCLC cell lines. Gefitinib dissociates this complex, thereby linking EGFR inhibition to decreased Akt activity. In contrast, gefitinib-resistant cells do not use ErbB-3 to activate the PI3K/Akt pathway. In fact, abundant ErbB-3 expression is detected only in gefitinib-sensitive NSCLC cell lines. Two gefitinib-sensitive NSCLC cell lines with endogenous distinct activating EGFR mutations (L858R and Del747-749), frequently observed in NSCLC patients who respond to gefitinib, also use ErbB-3 to couple to PI3K. Down-regulation of ErbB-3 by means of short hairpin RNA leads to decreased phospho-Akt levels in the gefitinib-sensitive NSCLC cell lines, Calu-3 (WT EGFR) and H3255 (L858R EGFR), but has no effect on Akt activation in the gefitinib-resistant cell lines, A549 and H522. We conclude that ErbB-3 is used to couple EGFR to the PI3K/Akt pathway in gefitinib-sensitive NSCLC cell lines harboring WT and mutant EGFRs.
منابع مشابه
ErbB-3 expression is associated with E-cadherin and their coexpression restores response to gefitinib in non-small-cell lung cancer (NSCLC).
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors are effective in a subset of patients with non-small-cell lung cancer (NSCLC). We previously showed that E-cadherin expression associates with gefitinib activity. Here, we correlated the expressions of ErbB-3 and E-cadherin in NSCLC tumors and cell lines, their effect on response to gefitinib, and induction of both by the histone dea...
متن کاملThe phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts.
Epidermal growth factor receptor (EGFR) inhibitors such as gefitinib show antitumor activity in a subset of non-small cell lung cancer (NSCLC) patients having mutated EGFR. Recent work shows that phosphatidylinositol-3-kinase (PI3-K) is coupled to the EGFR only in NSCLC cell lines expressing ErbB-3 and that EGFR inhibitors do not inhibit PI3-K signaling in these cells. The central role PI3-K pl...
متن کاملHER2 overexpression increases sensitivity to gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, through inhibition of HER2/HER3 heterodimer formation in lung cancer cells.
Gefitinib (Iressa), an epidermal growth factor receptor targeting drug, has been clinically useful for the treatment of patients with non-small cell lung cancer (NSCLC). Gefitinib is currently being applied in clinical studies as either a monotherapy, or as part of a combination therapy against prostate, head and neck, gastric, breast, and colorectal tumors. However, success rates vary between ...
متن کاملPF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib.
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors gefitinib and erlotinib are effective treatments for a subset of non-small cell lung cancers. In particular, cancers with specific EGFR-activating mutations seem to be the most sensitive to these agents. However, despite their initial response, such cancers almost invariably develop resistance. In 50% of such cancers, a secondar...
متن کاملAZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer.
PURPOSE To test the hypothesis that simultaneous, equipotent inhibition of epidermal growth factor receptor (EGFR; erbB1), erbB2 (human epidermal growth factor receptor 2), and erbB3 receptor signaling, using the novel small-molecule inhibitor AZD8931, will deliver broad antitumor activity in vitro and in vivo. EXPERIMENTAL DESIGN A range of assays was used to model erbB family receptor signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 10 شماره
صفحات -
تاریخ انتشار 2005